博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
mysql爱之深探测
阅读量:5058 次
发布时间:2019-06-12

本文共 41238 字,大约阅读时间需要 137 分钟。

第一:函数

一:内置函数

 MYSQL中提供了很多内置的函数,以下:

CHAR_LENGTH(str)        返回值为字符串str 的长度,长度的单位为字符。一个多字节字符算作一个单字符。        对于一个包含五个二字节字符集, LENGTH()返回值为 10, 而CHAR_LENGTH()的返回值为5。eg:mysql> select char_length('zhang')    -> ;+----------------------+| char_length('zhang') |+----------------------+|                    5 |+----------------------+1 row in set (0.00 sec)CONCAT(str1,str2,...)        字符串拼接        如有任何一个参数为NULL ,则返回值为 NULL。mysql> select concat('zz','l')    -> ;+------------------+| concat('zz','l') |+------------------+| zzl              |+------------------+1 row in set (0.01 sec)                        CONCAT_WS(separator,str1,str2,...)        字符串拼接(自定义连接符)        CONCAT_WS()不会忽略任何空字符串。 (然而会忽略所有的 NULL)。        mysql> select CONCAT_WS('**','zzl','cyy');+-----------------------------+| CONCAT_WS('**','zzl','cyy') |+-----------------------------+| zzl**cyy                    |+-----------------------------+1 row in set (0.00 sec)                CONV(N,from_base,to_base)        进制转换mysql> SELECT CONV('a',16,2);  表示将 a 由16进制转换为2进制字符串表示+----------------+| CONV('a',16,2) |+----------------+| 1010           |+----------------+1 row in set (0.01 sec)mysql> SELECT CONV('10',8,2); 表示将 a 由8进制转换为2进制字符串表示+----------------+| CONV('10',8,2) |+----------------+| 1000           |+----------------+1 row in set (0.00 sec)FORMAT(X,D)    将数字X 的格式写为'#,###,###.##',以四舍五入的方式保留小数点后 D 位, 并将结果以字符串的形式返回。若  D 为 0, 则返回结果不带有小数点,或不含小数部分。eg:mysql> SELECT FORMAT(89333322.31,5);+-----------------------+| FORMAT(89333322.31,5) |+-----------------------+| 89,333,322.31000      |+-----------------------+1 row in set (0.00 sec)INSERT(str,pos,len,newstr)        在str的指定位置插入字符串        pos:要替换位置其实位置        len:替换的长度        newstr:新字符串        特别的:            如果pos超过原字符串长度,则返回原字符串            如果len超过原字符串长度,则由新字符串完全替换mysql> select insert('zhang','1','1','Z')    -> ;+-----------------------------+| insert('zhang','1','1','Z') |+-----------------------------+| Zhang                       |+-----------------------------+1 row in set (0.01 sec)INSTR(str,substr)        返回字符串 str 中子字符串的第一个出现位置。mysql> select instr('zhang','an')    -> ;+---------------------+| instr('zhang','an') |+---------------------+|                   3 |+---------------------+1 row in set (0.01 sec)LEFT(str,len)        返回字符串str 从开始的len位置的子序列字符。mysql> select left('zhang',8)    -> ;+-----------------+| left('zhang',8) |+-----------------+| zhang           |+-----------------+1 row in set (0.00 sec)mysql> select left('zhang',3);+-----------------+| left('zhang',3) |+-----------------+| zha             |+-----------------+1 row in set (0.00 sec)LOWER(str)        变小写mysql> select LOWER('ZHAng');+----------------+| LOWER('ZHAng') |+----------------+| zhang          |+----------------+1 row in set (0.00 sec)UPPER(str)        变大写mysql> select UPPER('ZHAng');+----------------+| UPPER('ZHAng') |+----------------+| ZHANG          |+----------------+1 row in set (0.00 sec)                SUBSTRING(str,pos,len)        获取字符串子序列mysql> select substring('zhang','3','2')    -> ;+----------------------------+| substring('zhang','3','2') |+----------------------------+| an                         |+----------------------------+1 row in set (0.00 sec)        LOCATE(substr,str,pos)        获取子序列索引位置mysql> select locate('f','zhangfddadadafff','1');+------------------------------------+| locate('f','zhangfddadadafff','1') |+------------------------------------+|                                  6 |+------------------------------------+1 row in set (0.00 sec)REPEAT(str,count)        返回一个由重复的字符串str 组成的字符串,字符串str的数目等于count 。        若 count <= 0,则返回一个空字符串。        若str 或 count 为 NULL,则返回 NULL 。        mysql> select repeat('zhang',3)    -> ;+-------------------+| repeat('zhang',3) |+-------------------+| zhangzhangzhang   |+-------------------+1 row in set (0.01 sec)mysql> select repeat('zhang',2)    -> ;+-------------------+| repeat('zhang',2) |+-------------------+| zhangzhang        |+-------------------+1 row in set (0.00 sec)REPLACE(str,from_str,to_str)        返回字符串str 以及所有被字符串to_str替代的字符串from_str 。        mysql> select replace('zhangzhanling','ling','zhan')    -> ;+----------------------------------------+| replace('zhangzhanling','ling','zhan') |+----------------------------------------+| zhangzhanzhan                          |+----------------------------------------+1 row in set (0.00 sec)        REVERSE(str)        返回字符串 str ,顺序和字符顺序相反。        mysql> select reverse('zhang')    -> ;+------------------+| reverse('zhang') |+------------------+| gnahz            |+------------------+1 row in set (0.01 sec)RIGHT(str,len)        从字符串str 开始,返回从后边开始len个字符组成的子序列mysql> select right('zhang','3')    -> ;+--------------------+| right('zhang','3') |+--------------------+| ang                |+--------------------+1 row in set (0.00 sec)SPACE(N)        返回一个由N空格组成的字符串。mysql> select space(4)    -> ;+----------+| space(4) |+----------+|          |+----------+1 row in set (0.00 sec)        不带有len 参数的格式从字符串str返回一个子字符串,起始于位置 pos。带有len参数的格式从字符串str返回一个长度同len字符相同的子字符串,起始于位置 pos。 使用 FROM的格式为标准 SQL 语法。也可能对pos使用一个负值。假若这样,则子字符串的位置起始于字符串结尾的pos 字符,而不是字符串的开头位置。在以下格式的函数中可以对pos 使用一个负值。SUBSTRING(str,pos) , mysql> SELECT SUBSTRING('zhangzhanling',5);+------------------------------+| SUBSTRING('zhangzhanling',5) |+------------------------------+| gzhanling                    |+------------------------------+1 row in set (0.00 sec)SUBSTRING(str FROM pos)mysql> SELECT SUBSTRING('zhangzhanling' from 5);+-----------------------------------+| SUBSTRING('zhangzhanling' from 5) |+-----------------------------------+| gzhanling                         |+-----------------------------------+1 row in set (0.00 sec)SUBSTRING(str,pos,len) , mysql> SELECT SUBSTRING('zhangzhanling',4,5);+--------------------------------+| SUBSTRING('zhangzhanling',4,5) |+--------------------------------+| ngzha                          |+--------------------------------+1 row in set (0.00 sec)SUBSTRING(str FROM pos FOR len)mysql> SELECT SUBSTRING('zhangzhanling' from -4 for 2);+------------------------------------------+| SUBSTRING('zhangzhanling' from -4 for 2) |+------------------------------------------+| li                                       |+------------------------------------------+1 row in set (0.01 sec)
View Code

更多的请参照:

https://dev.mysql.com/doc/refman/5.7/en/functions.html

 二:自定义函数

1.查看自定义函数功能是个否开启:

mysql> show variables like '%func%';+---------------------------------+-------+| Variable_name                   | Value |+---------------------------------+-------+| log_bin_trust_function_creators | OFF   |+---------------------------------+-------+1 row in set, 12 warnings (0.02 sec)mysql> SET GLOBAL log_bin_trust_function_creators=1; 开启自定义函数功能Query OK, 0 rows affected (0.00 sec)mysql> show variables like '%func%';+---------------------------------+-------+| Variable_name                   | Value |+---------------------------------+-------+| log_bin_trust_function_creators | ON    |+---------------------------------+-------+1 row in set, 12 warnings (0.01 sec)注:SET GLOBAL log_bin_trust_function_creators=1; 关闭自定义函数功能

2.基本语法:

  delimiter 自定义符号  -- 如果函数体只有一条语句, begin和end可以省略, 同时delimiter也可以省略  create function 函数名(形参列表) returns 返回类型  -- 注意是retruns  begin    函数体    -- 函数内定义的变量如:set @x = 1; 变量x为全局变量,在函数外面也可以使用    返回值  end  自定义符号  delimiter ;

3.创建自定义函数示例:

mysql> delimiter $$mysql> create function my(a int, b int) returns int    -> begin    ->     return a + b;    -> end    -> $$Query OK, 0 rows affected (0.00 sec)mysql> delimiter ;

4.删除函数:

mysql> drop function my;Query OK, 0 rows affected (0.02 sec)

5.执行函数:

mysql> select my(11,23);+-----------+| my(11,23) |+-----------+|        34 |+-----------+1 row in set (0.01 sec)

第二:索引

一:索引介绍

为什么用索引?

在我们的生产环境中,一般读(查询)写(插入,更新,删除)的比例能占到1:10甚至更多,因此对查询语句的优化是非常重要的,这里就必须用索引喽。
索引是什么?
索引是数据库中专门用于帮助用户快速查询数据的一种数据结构,类似与字典中的目录,查找字典内容时可以根据目录查找到数据的存放位置目录,然后直接获取。
索引的好处是什么?
1.索引可以加快查询速度,但是并不是索引越多越好。

2.mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能

如果mysql数据库添加太多的索引,磁盘的iostat磁盘使用率会持续很高,甚至长时间达到100%。

二:mysql中常见的索引:

普通索引:

  只有加速查找的功能

eg:

创建表 + 索引 mysql> create table in1(    ->     nid int not null auto_increment primary key,    ->     name varchar(32) not null,    ->     email varchar(64) not null,    ->     extra text,    ->     index ix_name (name)    -> );Query OK, 0 rows affected (0.05 sec)创建索引mysql> create index int_name on in1(nid);Query OK, 0 rows affected (0.04 sec)Records: 0  Duplicates: 0  Warnings: 0查看索引mysql> show index from in1;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| in1   |          0 | PRIMARY  |            1 | nid         | A         |           0 |     NULL | NULL   |      | BTREE      |         |               || in1   |          1 | ix_name  |            1 | name        | A         |           0 |     NULL | NULL   |      | BTREE      |         |               || in1   |          1 | int_name |            1 | nid         | A         |           0 |     NULL | NULL   |      | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+3 rows in set (0.01 sec)删除索引mysql> drop index int_name on in1;Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0查看是否删除成功mysql> show index from in1;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| in1   |          0 | PRIMARY  |            1 | nid         | A         |           0 |     NULL | NULL   |      | BTREE      |         |               || in1   |          1 | ix_name  |            1 | name        | A         |           0 |     NULL | NULL   |      | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+2 rows in set (0.00 sec)注意:对于创建索引时如果是BLOB 和 TEXT 类型,必须指定length。create index ix_extra on in1(extra(32));

唯一索引:

    主键索引 PRIMARY KEY:加速查找+约束(不为空、不能重复)

    唯一索引 UNIQUE:加速查找+约束(不能重复)

创建表 mysql> create table in2(    ->     nid int not null auto_increment primary key,    ->     name varchar(32) not null,    ->     email varchar(64) not null,    ->     extra text,    ->     unique ix_name (name)    -> );Query OK, 0 rows affected (0.03 sec)创建唯一索引mysql> create unique index nid_name on in2(nid);Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0

主键索引:

  加速查询 和 唯一约束(不可含null)  

第一种创建方式:mysql> create table in3(    ->     nid int not null auto_increment primary key,    ->     name varchar(32) not null,    ->     email varchar(64) not null,    ->     extra text,    ->     index ix_name (name)    -> );Query OK, 0 rows affected (0.03 sec)第二种创建方式:mysql> create table in4(    ->     nid int not null auto_increment,    ->     name varchar(32) not null,    ->     email varchar(64) not null,    ->     extra text,    ->     primary key(nid),    ->     index ix_name (name)    -> );Query OK, 0 rows affected (0.03 sec)删除主键索引mysql> alter table in4 modify nid int, drop primary key;Query OK, 0 rows affected (0.05 sec)Records: 0  Duplicates: 0  Warnings: 0增加主键索引mysql> alter table in4 add primary key(name);Query OK, 0 rows affected (0.05 sec)Records: 0  Duplicates: 0  Warnings: 0

组合索引:

  简单的讲是将n个列组合成一个索引

  PRIMARY KEY(id,name):联合主键索引

  UNIQUE(id,name):联合唯一索引

       INDEX(id,name):联合普通索引

mysql> create table in5(    ->     nid int not null auto_increment primary key,    ->     name varchar(32) not null,    ->     email varchar(64) not null,    ->     extra text    -> );PRIMARY KEY(id,name):联合主键索引mysql> create index ix_name_email on in5(nid,name);Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0UNIQUE(id,name):联合唯一索引mysql> alter table in5 add unique index(nid,name);Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0INDEX(id,name):联合普通索引mysql> create index ix_name on in5(name,email);Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0

第三:测试索引

一:测试准备数据

创建表mysql> create table s1(    -> id int,    -> name varchar(20),    -> gender char(6),    -> email varchar(50)    -> );Query OK, 0 rows affected (0.03 sec)创建存储过程,实现批量插入记录mysql> delimiter $$    声明存储过程的结束符号 :$$mysql> create procedure auto_insert1()    -> BEGIN    ->     declare i int default 1;    ->     while(i<3000000)do    ->         insert into s1 values(i,'zzl','man',concat('zzl',i,'@wsdashi.com'));    ->         set i=i+1;    ->     end while;    -> END  #$$结束 Query OK, 0 rows affected (0.01 sec)mysql> delimiter ;重新声明分号为结束符号查看存储过程mysql> show create procedure auto_insert1\G*************************** 1. row ***************************           Procedure: auto_insert1            sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION    Create Procedure: CREATE DEFINER=`root`@`localhost` PROCEDURE `auto_insert1`()BEGIN    declare i int default 1;    while(i<3000000)do        insert into s1 values(i,'zzl','man',concat('zzl',i,'@wsdashi.com'));        set i=i+1;    end while;ENDcharacter_set_client: gbkcollation_connection: gbk_chinese_ci  Database Collation: latin1_swedish_ci1 row in set (0.00 sec)调用存储过程mysql> call auto_insert1(); mysql> call auto_insert1(); Query OK, 1 row affected (6 hours 30 min 52.60 sec)

二:没有建索引的情况下查询

mysql> select * from s1 where id=3500000;Empty set (1.63 sec)

时间1.63 sec

三:已经存在大量数据建索引

mysql> create index s1_id on s1(id);Query OK, 0 rows affected (7.54 sec)Records: 0  Duplicates: 0  Warnings: 0

注:如果在生产环境下面,在已经有的数据中,创建索引的时候,会锁表,用户不能使用该表,所以一般这样的操作要晚上做 

四:索引建立完成,并且依据刚建立的字段索引查询数据

mysql> select * from s1 where id=35000000;Empty set (0.01 sec)

时间0.01 sec

 五:小结:

1. 一定是为搜索条件的字段创建索引,比如select * from s1 where id = 222;就需要为id加上索引,如果id加上索引查询其他的字段是不管用的

2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快

注意:在生产环境中,一个新的功能上线,需要建表,站在运维的角度,一定要多问以下开发,这个表是否有大量的读操作,如果有的话,需要开发明确怎么查询的,从而建索引,如果读的少,写的多,可根据情况不建索引,索引过多会消耗磁盘利用率的。

第四:如何正确命中索引

一:索引未命中

1.范围问题:或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like、

等于:指定要找2000这个id号,在索引树中可以快速的查找mysql> select count(*) from s1 where id=2000;+----------+| count(*) |+----------+|        1 |+----------+1 row in set (0.00 sec)大于:会利用索引树,没有指定那个id,而是指定了一个范围,这个范围包含大于2000的id,则mysql会拿着2001去搜索树中找一次,然后2002在找,一次类推,整体下来,和整表扫描没啥区别mysql> select count(*) from s1 where id>2000;+----------+| count(*) |+----------+|  2997999 |+----------+1 row in set (1.21 sec)如果范围小的话,查询速度仍然是很快的。mysql> select count(*) from s1 where id>2000 and id<3000;+----------+| count(*) |+----------+|      999 |+----------+1 row in set (0.01 sec)不等于:不等于2000,范围很大,查询很慢。mysql> select count(*) from s1 where id != 2000;+----------+| count(*) |+----------+|  2999998 |+----------+1 row in set (1.20 sec)等于2000,就一个数,则查询很快。mysql> select count(*) from s1 where id = 2000;+----------+| count(*) |+----------+|        1 |+----------+1 row in set (0.00 sec)between ...and...范围大的,查询依然还是很慢的mysql> select count(*) from s1 where id between 1 and 3000000;+----------+| count(*) |+----------+|  2999999 |+----------+1 row in set (1.30 sec)范围小的,查询是快的mysql> select count(*) from s1 where id between 1 and 2;+----------+| count(*) |+----------+|        2 |+----------+1 row in set (0.00 sec)like:前面带%号查询比后面带%或者等于特定值的要慢mysql> select count(*) from s1 where id like '1000dd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (1.09 sec)mysql> select count(*) from s1 where id like '1000dd%';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (1.08 sec)mysql> select count(*) from s1 where id like '%1000';+----------+| count(*) |+----------+|      300 |+----------+1 row in set (1.14 sec)

2.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,这个比例使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

 

查看下表结构mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  | MUL | NULL    |       || name   | varchar(20) | YES  |     | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  |     | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.02 sec)删除id的索引mysql> drop index  s1_id on s1;Query OK, 0 rows affected (0.03 sec)Records: 0  Duplicates: 0  Warnings: 0查看下是否删除成功mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  |     | NULL    |       || name   | varchar(20) | YES  |     | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  |     | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.00 sec)查看一个name等于dddd的个数有多少,速度是慢的mysql> select count(*) from s1 where name='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (1.77 sec)创建name的索引mysql> create index s1_name on s1(name);Query OK, 0 rows affected (8.35 sec)Records: 0  Duplicates: 0  Warnings: 0查询速度明显提升很多mysql> select count(*) from s1 where name='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.01 sec)查询name为zzl的字段,速度再一次变慢mysql> select count(*) from s1 where name='zzl';+----------+| count(*) |+----------+|  2999999 |+----------+1 row in set (1.05 sec)为何是这种情况呢?我们编写存储过程为表s1批量添加记录,name字段的值均为zzl,也就是说name这个字段的区分度很低利用b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1
<左2>
<左3>
<...而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。本例中就是这种极端的情况,name字段所有的值均为'zzl'所以得出,为区分度低的字段建立索引,索引树的高度会很高。1:如果条件是name='dddd',那么肯定是可以第一时间判断出'dddd'是不在索引树中的(因为树中所有的值均为'zzl’),所以查询速度很快2:如果条件正好是name='zzl',查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,在往下找,在在往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢

3.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

 

查看表结构

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  |     | NULL    |       |
| name   | varchar(20) | YES  | MUL | NULL    |       |
| gender | char(6)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

删除原有的索引

mysql> drop index s1_name on s1;
Query OK, 0 rows affected (0.02 sec)
Records: 0  Duplicates: 0  Warnings: 0

确认删除

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(6)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

没有建索引之前,查询速度是很慢点

mysql> select count(*) from s1 where name='zzl' and gender='man' and email='137@wsdashi.com'
    -> ;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (1.73 sec)

创建联合索引

mysql> create index s1_name on s1(name,gender,email);
Query OK, 0 rows affected (15.21 sec)
Records: 0  Duplicates: 0  Warnings: 0

查询速度加快

mysql> select count(*) from s1 where name='zzl' and gender='man' and email='137@wsdashi.com'
    -> ;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

随意的还位置,查询速度不变

mysql> select count(*) from s1 where name='zzl' and email='137@wsdashi.com' and gender='man';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.00 sec)

但是如果是两个的话,查询速度是慢的

mysql> select count(*) from s1 where name='zzl' and email='137@wsdashi.com' ;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (2.00 sec)

是一个的话,查询速度也是慢的

mysql> select count(*) from s1 where name='zzl' ;
+----------+
| count(*) |
+----------+
|  2999999 |
+----------+
1 row in set (1.91 sec)

4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)

查看表结构mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  |     | NULL    |       || name   | varchar(20) | YES  | MUL | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  |     | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.01 sec)删除原有的索引mysql> drop index s1_name on s1;Query OK, 0 rows affected (0.03 sec)Records: 0  Duplicates: 0  Warnings: 0创建id索引mysql> create index s1_name on s1(id);Query OK, 0 rows affected (7.63 sec)Records: 0  Duplicates: 0  Warnings: 0查看表结构mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  | MUL | NULL    |       || name   | varchar(20) | YES  |     | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  |     | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.01 sec)查询id的速度是相当快的,因为id有索引。mysql> select count(*) from s1 where id=4000;+----------+| count(*) |+----------+|        1 |+----------+1 row in set (0.00 sec)索引id字段参与了计算,无法拿到一个明确的值去索引树中查找,所以查询速度是比较慢的mysql> select count(*) from s1 where id*2=4000;+----------+| count(*) |+----------+|        1 |+----------+1 row in set (1.02 sec)

5.and/or

1、and与or的逻辑    条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立    条件1 or 条件2:只要有一个条件成立则最终结果就成立2、and的工作原理    条件:        a = 10 and b = 'ddd' and c > 3 and d =4    索引:        制作联合索引(d,a,b,c)    工作原理:        对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序3、or的工作原理    条件:        a = 10 or b = 'ddd' or c > 3 or d =4    索引:        制作联合索引(d,a,b,c)            工作原理:        对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

eg:

mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  | MUL | NULL    |       || name   | varchar(20) | YES  |     | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  |     | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.00 sec)name字段添加索引,但是改字段的区分度比较低mysql> create index s1name on s1(name); Query OK, 0 rows affected (9.00 sec)Records: 0  Duplicates: 0  Warnings: 0name='ddd'可以很快的从索引树中区分出该字段不存在,因而速度会很快mysql> select count(*) from s1 where name='ddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.00 sec)gender是非索引字段的,但是,name='ddd'不成立的话,就不用管gender的条件了呢,相当于只有name='ddd'速度还是很快的;mysql> select count(*) from s1 where name='ddd' and gender='man'    -> ;+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.00 sec)        在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询mysql> select count(*) from s1 where name='ddd' and gender='man';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.00 sec)mysql> select count(*) from s1 where name='zzl' and gender='man';+----------+| count(*) |+----------+|  2999999 |+----------+1 row in set (20.95 sec)mysql> create index s1_gender on s1(gender);Query OK, 0 rows affected (11.72 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> select count(*) from s1 where name='zzl' and gender='man';+----------+| count(*) |+----------+|  2999999 |+----------+1 row in set (3.74 sec)mysql> select count(*) from s1 where name='zzl' and gender='xxx';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.01 sec)mysql> select count(*) from s1 where name='zzl' and gender='man';+----------+| count(*) |+----------+|  2999999 |+----------+1 row in set (3.01 sec)mysql> select count(*) from s1 where name='zzl' and gender='man' and id=333;+----------+| count(*) |+----------+|        1 |+----------+1 row in set (0.01 sec)mysql> select count(*) from s1 where name='zzl' and gender='man' and id>333;+----------+| count(*) |+----------+|  2999666 |+----------+1 row in set (18.17 sec)mysql> select count(*) from s1 where name='zzl' and gender='xxx' and id>333;+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.02 sec)mysql> select count(*) from s1 where name='zzl' and    -> gender='xxx' and id>222;+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.00 sec)mysql> select count(*) from s1 where name='zzl' and    -> gender='man' and id>222;+----------+| count(*) |+----------+|  2999777 |+----------+1 row in set (21.25 sec)当前面三个条件都成立的时候,都无法用索引达到加速的目的,name和gender是因为区分度低,第三个id因为范围太大了,第四个email的区分度很高,但是没有添加索引,所以该语句查询速度是非常的低的mysql> select count(*) from s1 where name='zzl' and    -> gender='man' and id> 222 and email='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (22.87 sec)给email字段添加索引mysql> create index s1_email on s1(email);Query OK, 0 rows affected (16.55 sec)Records: 0  Duplicates: 0  Warnings: 0添加上email字段的索引后,索引明显的提升mysql> select count(*) from s1 where name='zzl' and    -> gender='man' and id> 222 and email='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.02 sec)经过分析,在条件为name='zzl' and gender='man' and id>222 and email='dddd'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率验证:mysql> select count(*) from s1 where name='zzl' and    -> gender='man' and id> 222 and email='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.02 sec)mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  | MUL | NULL    |       || name   | varchar(20) | YES  | MUL | NULL    |       || gender | char(6)     | YES  | MUL | NULL    |       || email  | varchar(50) | YES  | MUL | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.01 sec)mysql> drop index s1_gender on s1;Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> drop index s1name on s1;Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> drop index s1_name on s1;Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field  | Type        | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id     | int(11)     | YES  |     | NULL    |       || name   | varchar(20) | YES  |     | NULL    |       || gender | char(6)     | YES  |     | NULL    |       || email  | varchar(50) | YES  | MUL | NULL    |       |+--------+-------------+------+-----+---------+-------+4 rows in set (0.01 sec)mysql> select count(*) from s1 where name='zzl' and    -> gender='man' and id> 222 and email='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.00 sec)删掉索引后时间是0.00不删是0.02,同时也论证了不是索引越多越好的哦

6. 最左前缀匹配原则

对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

mysql> drop index s1_email on s1;Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0建立索引的时候,没有将范围写到最后面,查询速度慢mysql> create index ddd on s1(id,name,gender,email);Query OK, 0 rows affected (16.29 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> select count(*) from s1 where name='zzl' and gender='man' and id > 222  and email='dddd';+----------+| count(*) |+----------+|        0 |+----------+1 row in set (2.27 sec)更改查询的位置,有些许的提升,但是提升不大mysql> select count(*) from s1 where name='zzl' and gender='man' and email='dddd' and id>222;+----------+| count(*) |+----------+|        0 |+----------+1 row in set (2.10 sec)删除刚才的索引mysql> drop index ddd on s1;Query OK, 0 rows affected (0.03 sec)Records: 0  Duplicates: 0  Warnings: 0把查询范围的,放到最后mysql> create index ddd on s1(name,gender,email,id);Query OK, 0 rows affected (17.44 sec)Records: 0  Duplicates: 0  Warnings: 0查询速度显著提升mysql> select count(*) from s1 where name='zzl' and gender='man' and email='dddd' and id>222;+----------+| count(*) |+----------+|        0 |+----------+1 row in set (0.01 sec)

7.其他

- 使用函数    select * from s1 where reverse(email) = '123@wsdashi.com';            - 类型不一致    如果列是字符串类型,传入条件是必须用引号引起来,不然...    select * from s1 where email = 999;    #排序条件为索引,则select字段必须也是索引字段,否则无法命中- order by    select name from s1 order by email desc;    当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢    select email from s1 order by email desc;    特别的:如果对主键排序,则还是速度很快:        select * from s1 order by nid desc; - 组合索引最左前缀    如果组合索引为:(name,email)    name and email       -- 命中索引    name                 -- 命中索引    email                -- 未命中索引- count(1)或count(列)代替count(*)在mysql中没有差别了- create index xxxx  on tb(title(19)) #text类型,必须制定长度
View Code

二:其他注意的地方

1 避免使用select *2 count(1)或count(列) 代替 count(*)3 创建表时尽量时 char 代替 varchar4 表的字段顺序固定长度的字段优先5 组合索引代替多个单列索引(经常使用多个条件查询时)6 尽量使用短索引7 使用连接(JOIN)来代替子查询(Sub-Queries)8 连表时注意条件类型需一致9 索引散列值(重复少)不适合建索引,例:性别不适合

第五:详谈组合索引和覆盖索引

一:组合索引

组合索引时指对表上的多个列合起来做一个索引。组合索引的创建方法与单个索引的创建方法一样,不同之处在仅在于有多个索引列,如下

mysql> create table s2(    -> a int,    -> b int,    -> primary key(a),    -> key id_a_b(a,b)    -> );Query OK, 0 rows affected (0.04 sec)

 那么何时需要使用组合索引呢?在讨论这个问题之前,先来看一下组合索引内部的结果。从本质上来说,组合索引就是一棵B+树,不同的是组合索引的键值得数量不是1,而是>=2。接着来讨论两个整型列组成的组合索引,假定两个键值得名称分别为a、b如图

可以看到这与我们之前看到的单个键的B+树并没有什么不同,键值都是排序的,通过叶子结点可以逻辑上顺序地读出所有数据,就上面的例子来说,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。

因此,对于查询select * from table where a=xxx and b=xxx, 显然是可以使用(a,b) 这个联合索引的,对于单个列a的查询select * from table where a=xxx,也是可以使用(a,b)这个索引的。

但对于b列的查询select * from table where b=xxx,则不可以使用(a,b) 索引,其实你不难发现原因,叶子节点上b的值为1、2、1、4、1、2显然不是排序的,因此对于b列的查询使用不到(a,b) 索引

组合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理,例如在很多情况下应用程序都需要查询某个用户的购物情况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用组合索引可以帮我们避免多一次的排序操作,因为索引本身在叶子节点已经排序了,如下

准备数据表mysql> create table buy_log(    ->     userid int unsigned not null,    ->     buy_date date    -> );Query OK, 0 rows affected (0.03 sec)mysql>mysql> insert into buy_log values    -> (1,'2009-01-01'),    -> (2,'2009-01-01'),    -> (3,'2009-01-01'),    -> (1,'2009-02-01'),    -> (3,'2009-02-01'),    -> (1,'2009-03-01'),    -> (1,'2009-04-01');Query OK, 7 rows affected (0.00 sec)Records: 7  Duplicates: 0  Warnings: 0mysql>mysql> alter table buy_log add key(userid);Query OK, 0 rows affected (0.02 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> alter table buy_log add key(userid,buy_date);Query OK, 0 rows affected (0.03 sec)Records: 0  Duplicates: 0  Warnings: 0mysql>  show create table buy_log;+---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table   | Create Table                                                                                                                                                                                            |+---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| buy_log | CREATE TABLE `buy_log` (  `userid` int(10) unsigned NOT NULL,  `buy_date` date DEFAULT NULL,  KEY `userid` (`userid`),  KEY `userid_2` (`userid`,`buy_date`)) ENGINE=InnoDB DEFAULT CHARSET=latin1 |+---------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.01 sec)可以看到possible_keys在这里有两个索引可以用,分别是单个索引userid与联合索引userid_2,但是优化器最终选择了使用的key是userid因为该索引的叶子节点包含单个键值,所以理论上一个页能存放的记录应该更多mysql> explain select * from buy_log where userid=2;+----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+| id | select_type | table   | partitions | type | possible_keys   | key    | key_len | ref   | rows | filtered | Extra |+----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+|  1 | SIMPLE      | buy_log | NULL       | ref  | userid,userid_2 | userid | 4       | const |    1 |   100.00 | NULL  |+----+-------------+---------+------------+------+-----------------+--------+---------+-------+------+----------+-------+1 row in set, 1 warning (0.01 sec)假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,因为在这个索引中,在userid=1的情况下,buy_date都已经排序好了mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3;+----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+| id | select_type | table   | partitions | type | possible_keys   | key      | key_len | ref   | rows | filtered | Extra                    |+----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+|  1 | SIMPLE      | buy_log | NULL       | ref  | userid,userid_2 | userid_2 | 4       | const |    4 |   100.00 | Using where; Using index |+----+-------------+---------+------------+------+-----------------+----------+---------+-------+------+----------+--------------------------+1 row in set, 1 warning (0.00 sec)
View Code

二:覆盖索引

InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。

使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作
注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性

对于InnoDB存储引擎的辅助索引而言,由于其包含了主键信息,因此其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)eg:
select age from s1 where id=123 and name = 'zzl'; #id字段有索引,但是name字段没有索引,该sql命中了索引,但未覆盖,需要去聚集索引中再查找详细信息。重要的是:索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了mysql> desc s1;+--------+-------------+------+-----+---------+-------+| Field | Type | Null | Key | Default | Extra |+--------+-------------+------+-----+---------+-------+| id | int(11) | NO | | NULL | || name | varchar(20) | YES | | NULL | || gender | char(6) | YES | | NULL | || email | varchar(50) | YES | | NULL | |+--------+-------------+------+-----+---------+-------+rows in set (0.21 sec)mysql> explain select name from s1 where id=1000; #没有任何索引+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2688336 | 10.00 | Using where |+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+row in set, 1 warning (0.00 sec)mysql> create index idx_id on s1(id); #创建索引Query OK, 0 rows affected (4.16 sec)Records: 0 Duplicates: 0 Warnings: 0mysql> explain select name from s1 where id=1000; #命中辅助索引,但是未覆盖索引,还需要从聚集索引中查找name+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | NULL |+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+row in set, 1 warning (0.08 sec)mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了全部信息,Using index代表覆盖索引+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | Using index |+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+row in set, 1 warning (0.03 sec)
View Code
innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于buy_log表有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作,故优化器的选择如上key为userid辅助索引对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下
#联合索引userid_2(userid,buy_date),一般情况,我们按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+| id | select_type | table   | type  | possible_keys | key      | key_len | ref  | rows | Extra                    |+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+|  1 | SIMPLE      | buy_log | index | NULL          | userid_2 | 8       | NULL |    7 | Using where; Using index |+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+1 row in set (0.00 sec)
View Code

第六:执行计划

详细的参考:https://dev.mysql.com/doc/refman/5.5/en/explain-output.html执行计划:一般情况下是这样的    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const    id,email        慢:        select * from userinfo3 where name='alex'                explain select * from userinfo3 where name='alex'        type: ALL(全表扫描)            select * from userinfo3 limit 1;    快:        select * from userinfo3 where email='alex'        type: const(走索引)

第七:MySQL慢查询

一:慢查询优化的基本步骤

1.如果运行真的是非常的慢,需要设置SQL_NO_CACHE2.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高3.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)4.order by limit 形式的sql语句让排序的表优先查5.了解业务方使用场景6.加索引时参照建索引的几大原则7.观察结果,不符合预期继续从0分析

二:慢日志管理

慢日志            - 执行时间 > 10            - 未命中索引            - 日志文件路径                    配置:            - 内存                show variables like '%query%';                show variables like '%queries%';                set global 变量名 = 值            - 配置文件                mysqld --defaults-file='E:\xunyou\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'                                my.conf内容:                    slow_query_log = ON                    slow_query_log_file = D:/....                                    注意:修改配置文件之后,需要重启服务
MySQL日志管理========================================================错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作查询日志: 记录查询的信息慢查询日志: 记录执行时间超过指定时间的操作中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放通用日志: 审计哪个账号、在哪个时段、做了哪些事件事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等========================================================一、bin-log1. 启用# vim /etc/my.cnf[mysqld]log-bin[=dir\[filename]]# service mysqld restart2. 暂停//仅当前会话SET SQL_LOG_BIN=0;SET SQL_LOG_BIN=1;3. 查看查看全部:# mysqlbinlog mysql.000002按时间:# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字节数:# mysqlbinlog mysql.000002 --start-position=260# mysqlbinlog mysql.000002 --stop-position=260# mysqlbinlog mysql.000002 --start-position=260 --stop-position=9304. 截断bin-log(产生新的bin-log文件)a. 重启mysql服务器b. # mysql -uroot -p123 -e 'flush logs'5. 删除bin-log文件# mysql -uroot -p123 -e 'reset master' 二、查询日志启用通用查询日志# vim /etc/my.cnf[mysqld]log[=dir\[filename]]# service mysqld restart三、慢查询日志启用慢查询日志# vim /etc/my.cnf[mysqld]log-slow-queries[=dir\[filename]]long_query_time=n# service mysqld restartMySQL 5.6:slow-query-log=1slow-query-log-file=slow.loglong_query_time=3查看慢查询日志测试:BENCHMARK(count,expr)SELECT BENCHMARK(50000000,2*3);
mysql日志相关管理

 

转载于:https://www.cnblogs.com/ylqh/p/8494524.html

你可能感兴趣的文章
STL——配接器、常用算法使用
查看>>
第9课 uart
查看>>
Range和xrange的区别
查看>>
BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
查看>>
java-动态规划算法学习笔记
查看>>
STL容器之vector
查看>>
Linux 内核中断内幕
查看>>
DNS负载均衡
查看>>
无法向会话状态服务器发出会话状态请求
查看>>
数据中心虚拟化技术
查看>>
Oracle OEM 配置报错: No value was set for the parameter DBCONTROL_HTTP_PORT 解决方法
查看>>
01入门
查看>>
python正则表达式
查看>>
嵌套循环连接(nested loops join)原理
查看>>
shell统计特征数量
查看>>
复习文件操作
查看>>
C#Hashtable与Dictionary性能
查看>>
10个让你忘记 Flash 的 HTML5 应用演示
查看>>
8个Python面试必考的题目,小编也被坑过 ToT
查看>>
SQL Server 使用作业设置定时任务之一(转载)
查看>>